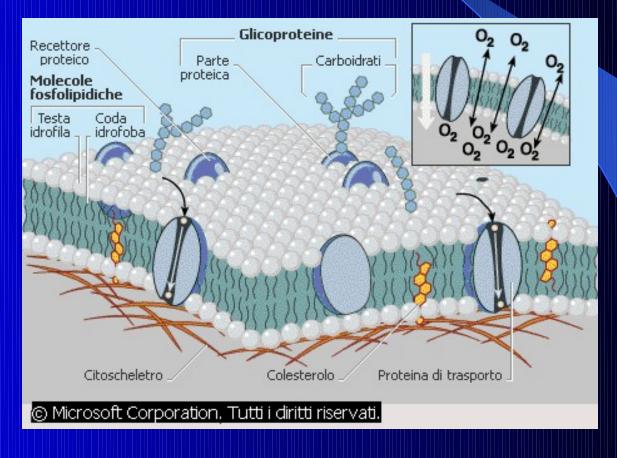
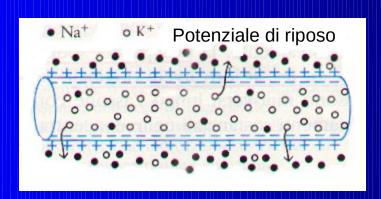
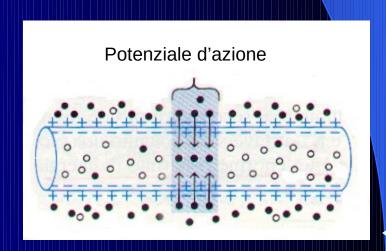
CAMPIELETTROMAGNETICI ORGANISMI BIOLOGICI

Identificazione degli inquinanti ambientali presenti sul territorio di Crema e indagine sulle relazioni che i fattori inquinanti possono apportare agli organismi biologici.


Liceo Scientifico "L. da Vinci", classi IV Istituto Agrario "Stanga", classe IV Istituto "Pacioli" Geometri, classe III

RELAZIONEDE CAMPI ELETTROMAGNETIC CON LA MATERIA VIVENTE


Nell'incontro del 7 aprile, il prof. Emilio del Giudice e il dr. Getullio Talpo hanno introdotto il problema delle conseguenze che le onde elettromagnetiche hanno sulle cellule e sugli esseri viventi in generale. A questo scopo, è importante conoscere come avviene la trasmissione dei segnali e come funzionano gli scambi ionici delle nostre cellule.


Il compimento efficiente e armonico delle diverse funzioni dell'organismo <mark>è dovuto ai sistemi di <u>comunicazione</u> esistenti tra le cellule e tra queste e</mark> l'ambiente esterno. L'importanza di questi meccanismi di controllo diventa particolarmente evidente proprio quando essi vengono meno. Il sistema di trasmissione dei segnali di molti organismi viventi è simile, per certi aspetti, al sistema elettrico di un'automobile. La molecola che funge da messaggero, prodotta e secreta da una cellula, in genere agisce su molecole, chiamate recettori, localizzate sulla superficie o all'interno di altre cellule; l'interazione tra <u>messaggero e recettore</u> può dare inizio a una cascata di reazioni biochimiche all'interno del citoplasma della cellula ricevente: si tratta di un meccanismo elettromagnetico. Le modificazioni causate da queste reazioni, ad esempio la variazione della concentrazione di ioni e molecole specifiche, possono contribuire a regolare l'attività delle proteine, in particolare degli enzimi.

Dal punto di vista strettamente biologico, la <u>cellula</u> è costituita da una membrana di doppio strato lipidico, che divide lo spazio intracellulare, (negativo per la presenza di varie proteine in soluzione e di altre grosse molecole organiche con carica negativa), dal liquido extracellulare, con carica positiva.

La differenza nella quantità di carica elettrica fra una regione di carica positiva e una di carica negativa è detta potenziale elettrico. Questo potenziale è trasformato in carica elettrica quando le particelle cariche sono fatte passare attraverso una soluzione, tramite canali e pompe di membrana, formati da proteine. Nei neuroni, il potenziale di riposo è -70 millivolt. Per mantenere il potenziale di riposo è fondamentale la presenza di canali per Na⁺ e di K⁺. Quando giunge lo stimolo, si aprono i canali del sodio, gli ioni entrano rapidamente e la polarità della membrana si inverte (potenziale d'azione). La pompa, poi, ristabilisce il potenziale di riposo, riportando le concentrazioni ioniche al livello originale.

La propagazione dell'impulso è, perciò, dovuta a <u>cambiamenti elettrici</u> prodotti a livello di membrana.

Sappiamo, inoltre, che gli ioni girano intorno ai propri assi con una ben precisa <u>frequenza</u>:

$$F_c = 1/T = (q B_o)/(2\pi m)$$

Quindi, le onde esterne elettromagnetiche possono influire su tutti questi complessi meccanismi, interferendo con i campi magnetici del sistema nervoso umano.

- Quali effetti sono provocati dalle onde elettromagnetiche?
- Ci sono alterazioni nella circolazione degli ioni e nella loro quantità?
- Quali sono gli eventuali danni?

SI RINGRAZIANO:

- Associazione Sergio e Mariolina Slossel
- Prof. Emilio Del Giudice ricercatore presso INFN di Milano
- Dr. Getullio Talpo ricercatore dell'Università di Padova
- Dr. Vincenzo Palma docente di neurolinguistica
- Dr. Sacchi tecnico ARPA di Cremona